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Graphic Representation and Nomenclature of the Four-Dimensional Crystal Classes. 
I. Classes with Symmetry Operations of Order Not Greater Than Two 
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Abstract 

Hyperstereographic projections have been prepared (in 
the form of stereo-pairs) of the sixteen four-dimen- 
sional (geometric) crystal classes that contain only 
symmetry operations of order not greater than 2. These 
provide an initial demonstration of the usefulness of the 
hyperstereographic projection in visualizing the nature 
of four-dimensional symmetry elements and symmetry 
groups. The clarification thus introduced into the 
subject has suggested a rationalized system of symbolic 
nomenclature following the general principles of the 
Hermann-Mauguin notation. 

Introduction 

The symmetry of all the 227 four-dimensional geo- 
metric crystal classes (here abbreviated to crystal 
classes) has been tabulated by Brown, Billow, 
Neubilser, Wondratschek & Zassenhaus (1978)as part 
of their work on the crystallographic space groups of 
four-dimensional space. However, the form of this 
tabulation in terms of generating matrices is not 
conducive to a ready visualization of the symmetries 
involved and their relationship to those of the three- 
dimensional crystal classes. The latter are commonly 
illustrated by stereograms on which the symmetry 
elements are represented by a code of graphic symbols 
in their mutual orientations, and the symmetrical 
repetition of a point, in an arbitrary general position, is 
displayed. The same thing can be done for the 
four-dimensional case by using the hyperstereographic 
projection (Whittaker, 1973a). This is a three-dimen- 
sional figure, however, and is correspondingly more 
difficult to construct. A model was constructed 
(Whittaker, 1973b) to show the arrangement of the 
rotation planes in the symmetry of the hypercube (class 
32/21 of the tabulation of Brown et al., 1978). 
However, the work involved in building such models 
precludes their production for more than a very few 
crystal classes, and even then it would be difficult to 
include in them a set of symmetry-related points. 

The problem has now been surmounted by the 
preparation, by computer graphics, of stereo-pairs of 
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hyperstereograms. These not only illustrate the sym- 
metry of each crystal class, but also illuminate in a 
graphic way the nature and relationship of the 33 
crystal systems of four dimensions, and also the 
nature of the less-obvious symmetry operations of 
four-dimensional space. They also suggest a way of 
extending the Hermann-Mauguin nomenclature of 
crystal classes so as to deal with the complications 
introduced by a fourth dimension. 

The illustrations in this paper are confined to the first 
16 crystal classes. These belong to the first six crystal 
systems of Brown et al. (1978) and comprise all those 
which involve no symmetry operation of order greater 
than 2. The technique is by no means limited to these 
(and work is well advanced on the remaining 211), but 
they provide a sufficient sample to illustrate the power 
of the method. 

Computation 

The computation was done using the graphics package 
GINO-F on the Digital VAX 11/780 computer of the 
Oxford University Computing Service. The plots were 
produced in ink on a Calcomp 1051. The size of the 
stereograms plotted was limited to 10 cm diameter in 
order to avoid undue loss of line thickness on reduction 
x ½ to give a separation of 5.5 cm between stereo-pairs. 
Point perspective was used at an eye distance of 40 cm 
from the centre of the 10 cm diameter sphere, and the 
two viewing directions were separated by an angle of 
2.9 ° . The figures in this paper have been further 
reduced to fit onto the journal pages. 

The symmetric repetition of the general point was 
computer generated in each case from generating 
matrices listed by Brown et al. (1978). The positions of 
the symmetry elements to be represented had to be 
determined by inspection of the full set of matrices. 

Symmetry elements and their nomenclature 

The symmetry element corresponding to a symmetry 
operation is defined as the subspace in which every 

© 1983 International Union of Crystallography 



124 REPRESENTATION OF THE FOUR-DIMENSIONAL CRYSTAL CLASSES. I. 

point is invariant for the operation. It increases by one 
in its dimensionality for every increase of one in the 
dimensionality of the space in which the operation is 
defined, and the relationship is evident from matrix 
representations of the symmetry operators in simple 
cases. 

dimensional matrix may be extended to higher dimen- 
sions in the same way. All these rotations have 
symmetry elements that are respectively a rotation axis 
and a rotation plane, and are symbolized by the same 
numerals 2, 3, 4, 6. 

Mirror  reflection 

In one dimension this is the only symmetry 
operation* (apart from the identity), and its matrix 
representation is (i). It changes the sign of the single 
coordinate that exists, and its symmetry element is the 
point that it leaves invariant. In two dimensions change 
of sign of one coordinate leaving the second un- 
changed is represented by 

if the first coordinate is taken as the one that is reversed 
by the symmetry. The symmetry element is then a line 
coincident with the axis of the second coordinate. 
Extension to the next higher dimensions by addition of 
1 on the diagonal then leads to 

(i 0 0 i) 1 and 1 0 
0 0 1 

0 0 

whose symmetry elements are respectively a plane and 
a hyperplane perpendicular to the first axis. In any 
number of dimensions the appropriate symbol is m. 

Rotat ion  

Rotation first becomes possible in two dimensions, 
when its symmetry element is a point. The matrix for 
two-fold rotation can be derived from that for one- 
dimensional reflection by extension of the diagonal with 
a '  1' to give 0) 
Again, as the dimensionality is extended cor- 
responding operations are obtained if ones are added 
along the matrix diagonal, so that twofold rotations in 
three and four dimensions are represented by ( 0oi) 0 i and 0 i 0 

0 0 0 0 1 
0 0 0 

Higher-order three, four and sixfold rotations are not 
discussed in this paper, but the appropriate two- 

* Symmetry operations of infinite repeating patterns, as well as 
noncrystallographic symmetry, are excluded from the discussion. 

Rota t ion- invers ion  

Just as a new kind of symmetry operation (rotation) 
arises in two dimensions when a 1 is added to the 
diagonal of the one-dimensional reflection matrix, so a 
new kind of symmetry arises in three dimensions if a 
rotation matrix 

(a :) (i i) is extended to give d . 
0 

This corresponds to a combination of a rotation (00 r, d , with reflection 1 
0 0 

in a perpendicular plane. This is an operation of 
rotation-reflection, symbolized as •. The symbol ~ has 
been adopted as the symbol for a rotation-inversion 

3 , 
0 

the product of the rotation r with ( 0o) 
o i 9 . 
0 0 1 

Use of the rotation-inversion rather than rotation- 
reflection has two advantages. The first is that it 
promotes the centre of inversion 

i , 

0 

symbolized as i, to the fundamental role it deserves 
(because it is the only operation which commutes with 
all translation groups) instead of regarding it as 2. The 
latter symbol is confusing as it has no directionality, 
since the component twofold rotation and perpen- 
dicular mirror can be taken in any arbitrary direction. 
The second advantage is that it also interchanges the 
symbols 3 = 6 and 6 = 3 which has advantages in the 
nomeiaclature of the trigonal and hexagonal systems. 

In previous work on four-dimensional symmetry 
there has been a tendency to revert to the terminology 
of rotation-reflection (Kuntsevich & Belov, 1968; 
Whittaker, 1973b). However, the present work reveals 
that there are substantial advantages in preserving the 
rotation-inversion nomenclature; it promotes clarity 
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for the same reasons as in three dimensions, and also 
brings out the relationships between four-dimensional 
symmetry and the familiar aspects of three-dimen- 
sional symmetry. 

Although it is traditional to speak of axes of 
rotation-inversion in three dimensions, this is mis- 
leading. The symmetry element that is invariant under 
these operations is a point, although in the case of 3, 
and 6 it is necessary to specify the direction of the 
component rotation. When dimensionality is extended 
to four the symmetry element truly becomes an axis, so 
that, for example, one has a 1 axis as the symmetry 
element corresponding to the operation 00 

i 0 
0 i • 
0 0 

In the case of 3, 4 and 6 axes it is necessary to specify 
the orientation of the component rotation plane. The 
direction of the axis necessarily lies in this plane. 

Operations with point symmetry elements in four 
dimensions 

These have no counterpart in three dimensions. The 
simplest is obtained by adding a diagonal - 1  to be 
matrix for the centre of inversion to give (00 ) 

f 0 
0 i 
0 0 

This has hitherto been regarded as a 'double rotation'; 
i.e. a twofold rotation about wx combined with a 
twofold rotation about yz (Kuntsevich & Belov, 1968), 
and symbolized as 22 (Whittaker, 1973b). However, 
the component rotations have no defined orientation. It 
is therefore proposed to treat it as a unitary operation 

symbolized (for obvious reasons) as 1. Symmetry 
operations represented by_corresponding extensions of 
the matrices for 3, 4 and 6 can similarly be symbolized 

as ~, 4 and ~ instead of 32, 42 and 62, though it is of 
course necessary to specify the orientation of their 
constituent 3, 4, or 6 rotation plane. The nature of these 
and of the remaining ten symmetry operations with 
point symmetry elements will be made much clearer by 
subsequent publications of illustrative hyperstereo- 

- 

grams. Only 1 is illustrated in the present work. 

Representation of symmetry elements in the 
hyperstereogram 

The mathematics of the hyperstereogram has been 
presented previously (Whittaker, 1973a). 

The primitive is the surface of the sphere. This is 

represented by broken lines along three orthogonal great 
circles, unless any symmetry element is to be denoted 
on those circles when another appropriate line is 
shown. 

Mirror hyperplanes are represented by spherical 
surfaces in the hyperstereogram: on the primitive, on 
diametral planes, or on saucer-shaped spherical caps 
(Whittaker, 1973a, Fig. 1). They are denoted by dotted 
circles lying on them. In the case of a mirror on the 
primitive these are vertical small circles at l/V/2 from 
the origin, and the orthogonal great circles are also 
dotted unless rotation planes are denoted on them, in 
which case their appropriate symbolism takes pre- 
cedence. In the case of a mirror on a diametral plane 
the dotted circle is of radius 0.5. Spherical caps do not 
occur in the present work. 

Rotation planes are represented in the hyperstereo- 
gram by great circles and diameters of the primitive, 
and (in other cases than those treated here) by circular 
arcs joining the ends of such diameters (Whittaker, 
1973a, Fig. 2). Twofold rotation is denoted by a full 
line. Higher orders are denoted by an additional symbol 
but do not occur in the present work. 

Rotation-inversion axes are represented by points in 
the hyper-stereogram. They are denoted by open 
symbols (a circle for i) corresponding to those used in 
ordinary stereograms. Their component rotation planes 
are denoted when necessary by . . . .  , but this does not 
occur in the present work. 

Point symmetry elements do not intersect the 
hypersphere and so have no location in the hyper- 
stereogram. 

Representation of crystallographic axes in the hyper- 
stereogram 

The z axis is projected to the centre of the primitive 
where it is denoted by a dot. In orthogonal systems the 
w, x and y axes project on the primitive, respectively at 
the front and right-hand side of the equator and at the 
north pole. They are always on the primitive if the 
angles wz, xz, yz are right angles. If such angles are 
acute the axis plots inside the primitive. If they are 
obtuse the axes would plot outside the primitive, but 
they are then reprojected to the opposite pole of the 
hypersphere and are denoted by very small circles 
inside the primitive in the usual way. 

Symmetric repetition of a general point 

A general point with a positive (orthogonal) z co- 
ordinate is represented by a triaxial cross, and one with 
a negative one (reprojected to the opposite pole of the 
hypersphere so as to fall inside the primitive) as a small 
empty sphere of the same size. 
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Table 1. Nomenclature for the four-dimensional crystal classes that involve symmetry elements not greater than 2 

Brown et al. Extended symbol if Order Symmetry elements represented 
Ordinal no. (1978) Symbol different of  group in Fig. 1 

Family I. Hexaclinic 
System 1 

1 1/01 1 
2 1/03 1 

Family II. Triclinic 
System 2 

3 2/01 m 
4 2/02 i 
5 2/03 i /m 

Family III. Diclinic 
System 3 

6 3/01 2 
7 3/02 2-2 

Family IV. Monoclinic 
System 4 

8 4/01 mm 
9 4/02 [m 

- _  

10 4/03 11 
11 4/04 i /m i /m 

Family V. Orthogonal 
System 5 

12 5/01 22 
13 5/02 222 

System 6 
14 6/01 mmm 

15 6/02 i i i m  

16 6/03 mmmm 

1 None 
2 None 

2 m o n z = 0  
2 i a tz  
4 i a tz  and m o n  z = 0  

2 2 on wz 
4 2 on wx and yz 

ram; 2 4 rn o n y  = 0 and z = 0; 2 on wx 
l_m_; 2 4 [ aty,  m o n z = O ; 2 o n y z  
11; 2 4 1 at +y, z; 2 on wx 

i /m i /m;  2-2 8 i a t  +y,z,  m o n y = O a n d z = O ; 2  
on wx and yz 

22-2 4 2 on yz, zw and xz 
222222 8 2 on wx, xy, yz, zw, wy and xz 

mmm [; 22-2 8 m on w = 0, x = 0, and y = 0, 2 on 
yz, xw and xy 

i i i m ;  22-2 8 i at +w, +x, +y, m o n z = O ; 2 o n  
yz, zw and xz 

i /m i /m i /m i /m; 222222 16 i a t ± w , + x , + y ,  m o n w = O , x = O ,  
y = 0, z = 0; 2 on wx, xy, yz, zw, 
wy, xz 

The effects of the symmetry element operations in 
the 16 crystal classes illustrated are very simple. 

When a mirror is represented on an axial plane this 
plane acts as an ordinary mirror plane in the space of 
the hyperstereogram. 

A mirror represented on the primitive reflects a point 
inside the primitive to a point on a radial line and 
outside the primitive at an equal distance in terms of the 
metric of the stereographic ruler. When re-projected 
this becomes a point of opposite z coordinate coinci- 
dent with the original point. 

When a twofold rotation plane contains the z axis it 
is represented as a diameter of the primitive, and this 
diameter acts as an ordinary rotation axis in the space 
of the hyperstereogram. 

When a rotation plane is perpendicular to the z axis 
it is represented as a great circle of the primitive. In 
order to visualize its effect, consider a central section 
perpendicular to this great circle and passing through 
the general point. This section can then be regarded as 
an ordinary stereogram containing a rotation axis at its 
point of intersection with the great circle. 

An axis of i rotation-inversion located on any 
particular axis leads to a change of sign of all the 
coordinates other than the one relating to that axis. 

Thus i on z gives inversion of a positive point to a 
positive point, through the centre of the figure; 1 on y is 
equivalent to rotation around the vertical axis and 
change of a positive to a negative point. 

A ~ point gives rise to inversion through the centre of 
the figure accompanied by the change of a positive to a 
negative point. 

Application of these principles to the repetition of 
the crystallographic axes makes it delightfully clear 
how the symmetry imposes particular restrictions on 
the inter-axial angles in each crystal family. 

A nomenclature of the crystal classes 

The main difficulty in the way of a Hermann-Mauguin 
style nomenclature in four dimensions is that the 
orientation of a plane is not specifiable by the direction 
of a line perpendicular to it. However, mirror hyper- 
planes can be specified in this way. Thus, in the systems 
under discussion, one may look along each axis in turn 
(in the order w, x, y, z) and specify the presence of a 
rotation-inversion axis and/or a mirror in the usual 
way. If the fullest possible specification is required (e.g. 
to specify the choice of orientation of the axes with 
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respect to the symmetry) then a null symbol ( - )  can be 
written to correspond to directions in which no 
symmetry is present. However, since each axis is 
identically related to every other there is no loss of 
information, except that relating to orientation, if the 
null symbols are omitted. Thus class No. 3 (Fig. 1) is 
shown in the orientation - - -  m, but m is a sufficient 
symbol. 

Rotation planes have to be specified in a separate 
sequence. The order adopted for the axial plane is wx, 
xy, yz, zw, wy, zx, and a semi-colon is placed between 
the two series of symbols when both are present. 

Again, null symbols can be inserted as required to 
give an unambiguous notation, including orientation. 
A possible shortened notation that does not include 
orientation may be derived as follows: 

If there is only one rotation plane as in No. 6 all the 
null symbols may obviously be omitted. 

In four dimensions two planes may intersect in a line 
or only in a point, and in the latter case their 
representations in the hyperstereogram do not inter- 
sect at all. This means that the axial planes concerned 
do not contain a common axis, and there are three 
differently oriented possibilities for No. 7, where this is 
true, namely 2 -  2 - - - ,  - 2 -  2 - -  and . . . .  2 2. On the 
other hand, for No. 12 there are four differently 
oriented possibilities 2 2 - - -  2, - 2 2 -  2- ,  - -  2 2 -  2 and 
2 - - 2  2- .  If we make a convention that an orientation 
is chosen such that two planes are in the first four 
positions then No. 7 has two places occupied that are 
separated by a null symbol, whereas No. 12 always has 
two adjacent occupied places amongst these four 
(treated cyclicly). Thus we may symbolize No. 7 as 
2 - 2  and No. 12 as 2 2 (since two two-fold planes in the 
latter relationship necessarily imply the third). Thus in 

the sequence of symbols for rotation planes it is 
essential to retain a null symbol when the planes 
involved do not intersect in a line. 

Two sets of symbols for the first 16 classes are given 
in Table 1; 'extended symbols' are already in the 
shortened form discussed above. In the column headed 
'symbol' the contraction has been taken a stage further 
by omission of those symmetry elements that are 
necessarily implied by others. Their meaning will be 
greatly clarified by comparison with the hyperstereo- 
grams in Fig. 1. Additional complications in the 
nomenclature arise in some higher-symmetry systems, 
but these will be dealt with in a subsequent publication 
along with the corresponding explanatory hyperstereo- 
grams. 

Conclusion 

The hyperstereogram is a very powerful tool in 
clarifying the concepts of four-dimensional crystal- 
lography. 

Thanks are due to P. M. de Wolff for extremely 
helpful advice on improvements in the precision and 
clarity of presentation of the discussion. 
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Abstract 

In the general case where there is only one molecule in 
the asymmetric unit, and in the absence of non- 
crystallographic symmetry, molecular-replacement 
(MR) techniques can be used to solve an unknown 
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crystal structure from a closely related known 
molecular model. The procedure comprises two stages 
in order to find (i) the orientation of the model in the 
crystal, and (ii) the position of the well oriented model 
relative to the crystallographic symmetry elements. The 
most widely used rotation function R(8) [Rossmann & 
© 1983 International Union of Crystallography 


